一.培訓時間和地點
2014年10月25日至10月30日(10月24日報到)西安
2014年11月25日至11月30日(11月24日報到)深圳
2014年12月25日至12月30日(12月24日報到)北京
2015年02月07日至02月12日(02月06日報到)北京
二.課程目標
本課程以大數據架構與案例為驅動,采用一個完整地案例貫穿整個課程,讓學員體驗大數據架構的企業價值。在課程中學員將被賦予企業架構師角色,通過剖析企業對大數據的主要需求,使學員感悟大數據架構設計的過程與價值。具體課程目標包括:
1. 全面掌握Hadoop的架構原理和使用場景;
2. 全程項目實戰訓練;
3. 徹底掌握使用Hadoop進行MapReduce程序開發;
4. 熟悉分布式計算領域的常用算法;
5. 掌握Hive、HBase使用與優化技巧。
6. 了解云計算的發展歷史
7. 掌握云計算的實踐應用
8. 學習云計算的核心技術
9. 通曉云計算的商業價值。
三.培訓師資
錢老師 大數據專家。在電信、電力、金融行業從事Java開發和架構設計的工作;資深云計算研發工程師。作為項目的主要成員和負責人參與并領導完成了多個大型復雜項目,并成功應用于行業解決方案,如海量數據匹配系統、電力行業實時數據采集分析系統等。設計并實現了實時索引系統-云搜,成功應用與某國企知識庫系統。并可應用與互聯網行業的搜索等應用。完成多個云計算解決方案的架構,涉及到金融韓行業海量數據分析與數據處理系統、海量日志分析系統、電力用電信息統計系統等,獲得業界認可。
朱老師 十余年IT行業經驗,IBM企業數據分析與大數據專家,數據中心系統架構設計,性能管理與容量評估專家,主要專業特長包括基礎架構云平臺設計、服務器及存儲虛擬化、數據庫優化、性能管理、容量評估等領域。具有豐富的教學和實踐經驗,對IT職業培訓有深刻的理解。曾參與多家大型銀行系統架構設計,在高可用性高性能大容量系統領域的虛擬化和大數據處理有深入的研究,能夠結合實際,在復雜的應用環境中選擇適合的分析技術來降低運維風險、縮短停機時間、提高系統及數據庫性能。多次全國巡講。授課過程理論與實踐并重,深入淺出,講課詼諧幽默、氣氛活躍,深受廣大學員好評。
四.學習對象
軟件工程師、數據庫開發人員、網絡后臺開發人員、運維人員;地方政府云計算物聯網產業負責人;各地云計算中心負責人;云計算物聯網產業規劃負責人;云計算產業投資團隊;云計算應用開發商;云計算硬件設備提供商;云服務運營服務提供商;高校、科研院所云計算項目負責人。
五.課程大綱
(第一專題:大數據與云計算架構)
日程 |
授課主題 |
課程安排 |
第
一
天
|
云計算概述 |
云的理想
云的挑戰
發展的趨勢
云是什么
不同工作負載適用不同的云
選擇合適的云平臺
幾個云應用案例
我們身邊的云 |
云架構 |
云多層架構視圖
IaaS、PaaS與SaaS的定位與異同
云平臺的發展現狀
云數據中心技術架構 |
IAAS云層的原理與應用 |
IaaS的基礎:虛擬化
虛擬化相關技術
Power云部署方案介紹
VMWare云部署方案介紹
OpenStack云部署方案介紹
SONAS云存儲方案介紹
應用實例 |
第
二
天
|
PaaS云層的原理與應用 |
PaaS的架構原理
基于WebSphere的PaaS設計實踐 |
SaaS云層的原理與應用 |
SaaS的架構原理
一個公有云SaaS的設計實踐 |
云計算的性能管理與容量規劃 |
什么是性能容量管理
性能容量管理參考案例
壓力測試基本理論
系統性能設計與調優 |
第
三
天 |
大數據云的原理與架構 |
存儲子系統
傳統文件系統
松耦合網絡文件系統
共享存儲文件系統
基于對象的存儲子系統
大數據存儲子系統
Google GFS
Facebook Haystack
Amazon Dynamo
Yahoo PNUTS
Google BigTable
云存儲服務
Amazon Simple Storage Service
Google Storage for Developers |
(第二專題:大數據分析與Hadoop開發)
日程 |
模塊單元 |
模塊單元 |
第
四
天 |
第1個主題:Hadoop的來源和動機
1.傳統大規模系統存在的問題
2.對一種新的解決方案的需求
3.Hadoop應用案例解析
4.Hadoop 版本介紹
5.Hadoop與傳統分布式環境的區別
第2個主題:Hadoop安裝和部署準備
1. Hadoop系統模塊組件概述
2. Hadoop試驗集群的部署結構
3. Hadoop 安裝依賴關系
4. Hadoop 生產環境的部署結構
第3個主題:Hadoop集群安裝和部署
第4個主題:Hadoop組件詳解
1. Hadoop HDFS 基本結構
2. Hadoop HDFS 副本存放策略
3. Hadoop NameNode 詳解
4. Hadoop SecondaryNameNode 詳解
5. Hadoop DataNode 詳解
6. Hadoop JobTracker 詳解
|
5.Mapper
6.Reducer
7.API 使用Eclipse進行快速開發
8.新MapReduce API
第4個主題:Hadoop 核心代碼剖析
1. Hadoop Mapper 類核心代碼剖析
2. Hadoop Reducer 類核心代碼剖析
第5個主題:HDFS分布式文件系統編程
1. Hadoop HDFS 剖析
2. Hadoop NameNode 剖析
3. Hadoop DataNode 剖析
4. hadoop I/O 操作
5. 使用Hadoop HDFS API對HDFS編程
第5個主題
|
第
五
天 |
第1個主題:Hadoop MapReduce
1. Hadoop JobTracker 剖析
2.Hadoop TaskTracker 剖析
3.Hadoop 任務提交流程剖析
第2個主題: Hadoop MapReduce Streaming編程
1. Hadoop Streaming 和 Java MapReduce Api 差異
2. 使用 MapReduce 實現數據庫功能
第3個主題:MapReduce分布式程序
1. MapReduce流程
2.剖析一個MapReduce程序
3.基本MapReduceAPI 概念
4.驅動代碼
第4個主題:Hadoop Mapreduce高級編程
1.ToolRunner介紹
2.使用MRUnit進行測試
3.利用Combiners來減少中間數據
4.使用Configure和Close方法來進行Map/Reduce設置和關閉
5.編寫Partitioner來優化負載平衡
6.直接訪問Hadoop分布式文件系統(HDFS)
7.使用分布式緩存(Distributed Cache)
|
第5個主題:MapReduce的優化
1. map優化
2. reduce優化
3. 小文件優化
第6個主題:MapReduce的任務調度
1. Queue調度的使用
2. 公平調度的使用
3. 能力調度的使用
第7個主題Hadoop 生態系統介紹
分布式管理組件-Zookeeper
分布式數據倉庫-Hive
分布式數據庫-HBase
數據導入導出-Sqoop
工作流管理- Ozzie
Hadoop數據倉庫-Hive
Hive基礎
Hive的作用和原理說明
Hadoop倉庫和傳統數據倉庫的協作關系;Hive與傳統數據庫的對接使用
Hadoop/Hive倉庫數據數據流
|
第
六
天 |
Hadoop數據倉庫-Hive
Hive Cli 的基本用法
HQL基本語法
自行編寫數據庫與Hadoop相互ETL工具的思路
|
Hadoop 分布式數據倉庫-HBase
Hbase概念與架構
hbase核心知識點
hbase安裝、部署
HBase配置優化綜述
表設計優化相關參數
監控工具使用方法及注意事項
常見異,F象級處理方法 |
六.培訓證書
1、工業和信息化部人才交流中心頒發的《全國信息化工程師》證書。
2、中國信息化培訓中心頒發的《高級數據架構師》證書。
證書可作為專業技術人員職業能力考核的證明,以及專業技術人員崗位聘用、任職、定級和晉升職務的重要依據。
七.培訓費用
培訓費4500元單項、8800元兩項(含培訓費、場地費、考試費、證書費、午餐)。 備注:參加公開課需要安排住宿的學員請提前聯系,統一安排,費用自理。(請學員自帶筆記本電腦、一寸彩照2張—背面注明姓名、身份證復印件一張)。 |